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SUMMARY

We present an optimal control approach for the isothermal film casting process with free surfaces described
by averaged Navier–Stokes equations. We control the thickness of the film at the take-up point using the
shape of the nozzle and the initial thickness. The control goal consists in finding an even thickness profile.
To achieve this goal, we minimize an appropriate cost functional. The resulting minimization problem is
solved numerically by a steepest descent method. The gradient of the cost functional is approximated using
the adjoint variables of the problem with fixed film width. Numerical simulations show the applicability
of the proposed method. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Polymer films for video and magnetic tapes are produced by film casting. The molten polymer
emerging from a flat die is first stretched a short distance between the die and a temperature-
controlled roll. The film shows a lateral neck-in as well as an inhomogeneous decrease in the
thickness. The formation of edge beads surrounding a central area of constant thickness is generally
called the dog bone defect or edge-bead defect. In this paper we develop a mathematical model
to predict the shape of the die, which minimizes the edge-bead defect.

This paper is organized as follows: In Section 2 we explain the mathematical model describing
the film casting process in an isothermal situation. In Section 3, the first-order optimality system is
introduced. Numerical methods and simulation results for both the state system and the optimization
problem are presented in Section 4. We conclude with an outlook on open questions for future
research.
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2. MODELLING FILM CASTING PROCESSES

In this paper we consider the stationary three-dimensional Newtonian, isothermal model for the
film casting process, derived earlier by Demay and co-workers [1–3] and Barq et al. [4]. The
geometry of the film casting process is shown in Figure 1. During the film casting process, polymer
is pressed through a nozzle or a die (located in the yz-plane) with a velocity u0 and wrapped up
(velocity uL>u0) by a spindle at x= L . The nozzle has a width of W0 in the y-direction and a
thickness of e0 in the z-direction. For typical film casting processes, the thickness of the film at
the nozzle is small compared with both the length and the width of the film, i.e. e0/W �1 and
e0/L�1. In this thin film limit, the velocity component in the z-direction is small and hence we
neglect it. The velocity components u and v in the xy-plane weakly vary with the z-coordinate
and hence we assume a two-dimensional flow. Averaging the mass and momentum equations over
the z-direction leads to the following reduced equations:

∇ ·(eU )=0 (1a)

(U ·∇)U = 1

Re
(�U+3∇(∇ ·U )) (1b)

where U =(u,v) denotes the velocity field in the x- and y-directions and e denotes the thickness
of the film in the z-direction. The Reynolds number Re= LuL/� is based on the length of the
film, the take-up velocity and the viscosity of the fluid.

Remark 2.1
Demay and co-workers, see [1, 2], used in their derivation averaged velocities in the xy-plane.
This yields a slightly modified momentum equation. Both models clearly predict the edge-bead
defect; see Figure 2.

Using the notations of Figure 1, system (1) has to be solved inside the two-dimensional film
domain �={(x, y) :0<x<L ,−W (x)<y<W (x)}. Note that the width W (x) of the film is a free
boundary and not known a priori. The boundary of the domain consists of the extrusion line
�1={0}×(−W (0),W (0)), the take-up line �2={L}×(−W (L),W (L)) and the lateral boundaries
�3=(0, L)×{−W (x)} and �4=(0, L)×{W (x)}.

At the inflow boundary, we prescribe a fixed inflow velocity and the initial film thickness

(u,v,e)=(u0,0,e0) at �1 (2a)

Figure 1. Sketch of the considered geometry for the film casting process.
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Figure 2. Thickness profile of the film casting process with edge-bead defect.

At the spindle, we also prescribe the winding velocity

(u,v)=(uL ,0) at �2 (2b)

The ratio D=uL/u0>1 between the winding and the extrusion velocity is also known as the draw
ratio. Owing to the hyperbolic nature of Equation (1a), there is no boundary condition for the
thickness on �2. The treatment of the lateral boundaries �3,�4 is more sophisticated, since they are
free boundaries. Their location is not known in advance and evolves with the width W =W (x) of
the film. The dynamic and kinematic conditions along the free boundary read as

�·n=0 at �3,�4 (2c)

u�xW −v=0 at �3,�4 (2d)

Here n denotes the unit outer normal to �i , i=3,4, and

�=(∇U )+(∇U )T+2(divU )I =
(
4�xu+2�yv �yu+�xv

�yu+�xv 2�xu+4�yv

)

is the stress tensor and I is the 2×2 identity matrix.
To simplify notations, we call z=(u,v,e) the state variables of the problem. Typical parameters

used throughout this paper are given as follows: stretching distance L=0.4m; film width at the
die W =1m; draw ratio D=10; Reynolds number Re=3.

Remark 2.2
Polymeric materials often exhibit a visco-elastic rheological behavior; see, e.g. [5] for a description
of the rheology of polymers. However, in this paper we use the simple Newtonian behavior to
keep the derivation of the equations short. The proposed optimization method can be applied as
well to different constitutive equations; see [6].
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3. OPTIMAL CONTROL

Model (1) is capable of predicting the final thickness e(L , y) of the film. This thickness profile
depends on the geometry e0 of the nozzle as well as the draw ratio D. Using a rectangular nozzle,
i.e. a uniform initial thickness e0, one obtains the well-known effect of edge beads; see Figure 2.
In this case the final film is thinner in the middle surface than at the lateral surface, which is an
undesired result. In contrast to that, industrial applications aim at producing films with a uniform
thickness profile at the take-up roll.

The parameters that can be modified are the initial thickness profile e0 and the velocity at the
die u0 as well as the velocity of the take-up roll uL . However, changing the constant velocity at the
take-up roll to a non-constant velocity profile is almost impossible under production conditions.
Hence, we focus on controlling the initial thickness e0 and the initial velocity u0 of the film.

To model the requirement of an even film thickness at the take-up roll, we consider the following
tracking-type cost functional:

J (z,�)=‖e(L , y)−ed‖2+�‖�‖2 (3)

where ed is the desired thickness and �=(e0,u0) is the control variable of the problem. The term
‖�‖2 is necessary in order to prove the existence of optimal control [7] and the parameter �>0
plays the role of a weight. As there is no physical meaning for ‖�‖2 in this problem, we consider
��0 so that it will become a negligible quantity in simulation.

The question of minimizing our cost functional J (z,�) belongs to the class of constrained
optimization problem, where the cost functional (3) is minimized with respect to the constraint
given by the state system (1),

minimize J (z,�) with respect to � subject to (1) (4)

Optimization problems with differential equations constraints have gained a huge interest in the
recent years; see [8, 9]. Optimal control problems for the Navier–Stokes equations, or models
arising from them, have been investigated in [6, 7, 10]. However, problems with free boundaries
are yet a field of research and not much is known about general methods for this situation [11, 12].

In the sequel, we will formally introduce the Lagrangian for problem (4). The first-order
optimality system can be derived and leads to the problem of finding the adjoint operator for the
state equations (1).

3.1. The first-order optimality system

Let Z denote the space of the state variables z=(u,v,e) and C be the set of admissible controls
�=(e0,u0), i.e. admissible nozzle shapes e0 and possible input velocity profiles u0. Restrictions
on the set C of admissible controls might arise from practical considerations, i.e. not all shapes e0
of the nozzle can be produced. However, to keep the theoretical framework as simple as possible,
we do not impose any restrictions on the controls. To shorten the notation, we write the state
system (1) together with its boundary conditions (2) shortly as P(z,�)=0, where P : Z×C→W ∗
is called the state operator. Using a set �=(�u,�v,�e)∈W of Lagrangian multipliers, we introduce
the Lagrangian L : Z×C×W →R by

L(z,�,�)= J (z,�)+〈P(z,�),�〉W ∗,W (5)

where 〈p,�〉W ∗,W ∈R denotes the duality pairing between p∈W ∗ and �∈W .

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1111–1124
DOI: 10.1002/fld



OPTIMAL CONTROL OF FILM CASTING PROCESSES 1115

Now, as a standard result from nonlinear optimization, the Karush–Kuhn–Tucker (KKT) system
is a necessary first-order optimality condition. Assuming enough regularity, the Lagrangian is
Fréchet-differentiable and the first-order optimality condition reads as

DL(z,�,�)=0

or componentwise

P(z,�)=0 in W ∗ (6a)

�z P∗(�)[z,�]+�z J (z,�)=0 in Z∗ (6b)

��P
∗(�)[z,�]+�� J (z,�)=0 in C∗ (6c)

In system (6), we can easily identify the state (6a), adjoint (6b) and gradient equation (6c) in
operator form.

Remark 3.1
To solve the KKT-system (6), we need to derive the adjoint equation (6b) in its strong or at least
weak form. Here, the existence of the free boundaries �3,�4 poses a severe difficulty. Hence, we
will derive in the sequel the adjoint equation for our model in the case of fixed boundaries.

This simplification is motivated by the observation that the adjoint variables, as a solution of
the adjoint equation, are only needed to compute the direction of the gradient in (6c). When
applying a numerical minimization algorithm to (4), we may also work with an inexact, only
approximative gradient direction. Hence, we may replace the full adjoint problem, originating for
the free boundaries, by a simpler, more tractable one with fixed boundaries. In Section 4, when
we present numerical results, we will a posteriori justify this approach. We will then see that our
algorithm, based only on the inexact gradient information, successfully reduces the cost functional
and terminates with a satisfactory solution for the minimization problem.

To derive the adjoint system and gradient equation, we rewrite the state problem (1) in a weak
form, multiply by the adjoint variables and integrate over the fixed domain [0, L]×[0,W ]. Then
we apply the boundary conditions (2a), (2b) and (2c), which read in the case of fixed boundaries
�3 and �4 as

�xu+2�yv=0, �yu+�xv=0 (7)

Differentiation with respect to the state variables z yields the system of adjoint equations. Assuming
enough regularity, we can identify the following strong form:

u�x�e+v�y�e=0 (8a)

1

Re
[4�xx�u+�yy�u+3�xy�v]+u�x�u+�y(v�u)−�xv�v =e�x�e (8b)

1

Re
[�xx�v +4�yy�v +3�xy�u]+�x (u�v)+v�y�v −�yu�u =e�y�e (8c)
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together with the boundary conditions

�e(L , y)= 2(e(L , y)−ed)

uL
(8d)

�u(0, y)=�v(0, y)=0, �u(L , y)=�v(L , y)=0 (8e)

1

Re

[
�y�u− 7

2
�x�v

]
+v�u =0,

4

Re
[�x�u−�y�v]−v�v =e�e on �3 and �4 (8f)

Taking the derivative of the Lagrangian L with respect to the control variable e0 and u0 yields the
gradient equations (9a) and (9b), respectively,∫ W

−W
�e(0, y)u0 dy=0 (9a)

∫ W

−W
�ee0− 4

Re

��u
�x

(0, y)=0 (9b)

4. NUMERICAL SIMULATIONS

The KKT-system (6) corresponding to the first-order optimality conditions for the minimization
problem (4) is a system of coupled, nonlinear PDEs. Hence, we will apply an iterative algorithm
to solve them.

4.1. Solution algorithm

Starting from an initial guess for e0 and u0 we compute the state variables z from the nonlinear
state equations. With this new state one can continue to solve the adjoint system for �. Using
the state and adjoint variables we are able to update the control variables e0 and u0. The detailed
algorithm reads as

1. Given initial controls e00 and u00, set k=0.
2. Solve the state equations (6a), i.e. (1) with the boundary conditions (2) as a free boundary

value problem to obtain the new state variables zk+1.
3. Given the state zk+1 corresponding to the controls ek0 and uk0, solve the adjoint problem (6b),

i.e. (8) as a fixed boundary value problem to obtain �k+1.
4. Given �k+1, update the control by

ek+1
0 (y)=ek0(y)−�k+1

e (0, y)uk0(y) (10a)

uk+1
0 (y)=uk0(y)−�k+1

e (0, y)ek0(y)+
4

Re

��k+1
u

�x
(0, y) (10b)

5. Calculate the cost functional J k+1= J (zk+1,�k+1)

6. If J k+1<	
then Stop
else set k=k+1 and go to step 2.
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Remark 4.1
In Equations (10a) and (10b) one might add a suitable step size for the updated controls to
improve the convergence behavior of the algorithm. Possible choices are an Armijo-type update
or an approximate line-search algorithm. For details refer to [13]. The numerical results given in
Section 4.4 were obtained using the above algorithm.

4.2. Solving the state equation

As the boundaries �3 and �4 are free surfaces, it is difficult to implement the boundary condition
� ·n=0. To overcome the free surface, we transform the domain into a square domain by mapping
the coordinates (x, y) to (x, ỹ) where ỹ(x)= y/W (x). Then, the new coordinates belong to a
square domain (x, ỹ)∈[0, L]×[−1,1]. Applying this coordinate transformation to the state system
(1) yields

�x (eu)− ỹ
W ′

W
�y(eu)+ 1

W
�y(ev)=0 (11a)

u�xu+ v

W
�ỹu−u ỹ

W ′

W
�ỹu

= 1

Re

[
4�xxu+ 1

W 2
�ỹ ỹu+ 3

W
�x ỹv−8ỹ

W ′

W
�x ỹu−4ỹ

W ′′

W
�ỹu

+4ỹ
(W ′)2

W 2
�ỹu+4ỹ2

(W ′)2

W 2
�ỹ ỹu−3ỹ

W ′

W 2
�ỹ ỹv−3

W ′

W 2
�ỹv

]
(11b)

u�xv+ v

W
�ỹv−u ỹ

W ′

W
�ỹv

= 1

Re

[
4�xxv+ 4

W 2
�ỹ ỹv+ 3

W
�x ỹu−2ỹ

W ′

W
�x ỹv− ỹ

W ′′

W
�ỹv

+ỹ
(W ′)2

W 2
�ỹv+ ỹ2

(W ′)2

W 2
�ỹ ỹv−3ỹ

W ′

W 2
�ỹ ỹu−3

W ′

W 2
�ỹu

]
(11c)

As the flow is symmetric about the centerline y=0, it is sufficient to solve the problem in the
half domain [0, L]×[0,1]. The boundaries of the computational domain are the extrusion line
�1={0}×[0,1], the take-up line �2={L}×[0,1] and the former free surface �3=[0, L]×{1}. The
fourth boundary �4=[0, L]×{0} is the symmetry line. The conditions at the boundaries read as

u=u0, v=0, e=e0 at �1 (12a)

u=uL , v=0 at �2 (12b)

u(x, y)=u(x,−y), v(x, y)=−v(x,−y), e(x, y)=e(x,−y) at �4 (12c)

1

W
�ỹu+�xv− ỹ

W ′

W
�ỹv=0,

2

W
�ỹv+�xu− ỹ

W ′

W
�ỹu=0 at �3 (12d)

The film widthW (x) is computed using the kinematic condition (2d), i.e.W ′ =v/u andW (0)=W0.
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In the numerical algorithm, we solve system (11b) and (11c) for the velocities u and v. Later, we
update the film width W . These steps are iterated until convergence is reached. Then, we compute
the film thickness using (11a).

Remark 4.2
If we use system (11) and (12) to derive the adjoint and gradient equation, we get the exact adjoint
gradient equation. However, the adjoint system will have a rather complicated structure and hence
it will be difficult and expensive to solve. Therefore, we prefer to work with the inexact adjoint
system (8), which is cheaper to solve. The price for the reduced complexity of the adjoint system
is an increase in the number of iterations needed to solve the full KKT-system (6).

4.3. Discretization

For the numerical simulations we use standard finite differences on a uniform grid with mesh
widths h,k>0 in the x- and ỹ-directions, respectively. The same grid is used for the state as
well as for the adjoint equations. We use the standard notation ui j to denote the value of the
function u at the grid point (xi , ỹ j )=(ih, jk). For the hyperbolic equations (11a) and (8a) we
apply upwind methods. In Equation (11a) governing the film thickness, the flow is oriented in the
positive x-direction (Figure 3); hence the upwind scheme reads as

(eu)i j −(eu)i−1 j

h
− y

W ′

W

(eu)i j+1−(eu)i j−1

2k
+ 1

W

(ev)i j+1−(ev)i j

k
=0

In the case of the adjoint thickness equation (8a) the information is travelling in the reverse
direction (Figure 4) and hence the upwind discretization reads as

ui j
(�e)i+1 j −(�e)i j

h
+vi j

(�e)i j −(�e)i j−1

k
=0

Figure 3. Flow direction in the state system.

Figure 4. Flow direction in the adjoint system.
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In the velocity equations (11b) and (11c) the nonlinear terms are handled by iteration. Central
differences are used to discretize the derivatives. The adjoint equations (8b) and (8c) are discretized
analogously.

4.4. Simulation results

In a first step, we solved the state system (1) or respectively (11) for a given constant initial
thickness e0. Figure 2 shows the thickness of the film. The transversal velocity component v is
shown in Figure 5. Figure 5 plots the transversal velocity v(x, ·) at different lateral cuts y= yi .

In Figure 5 the velocities are negative, implying that the fluid moves towards the centerline
y=0; this yields the neck-in of the film. This neck-in is also clearly visible in Figure 6 showing the
evolution of the width of the film. The centerline of the film, i.e. y=0, corresponds to the velocity
v=0 and the edge or boundary of the film corresponds to the curve with maximum velocity.
Along the central part of the film, i.e. close to the centerline, the transversal velocity component
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Figure 5. Transversal velocity v.
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Figure 6. Film width w.
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v is rather small. Hence, we may conclude that in the central part of the film mainly uniaxial
extension occurs, i.e. just a stretching in the longitudinal direction. Along the edges of the film,
biaxial extension is predominant leading to a stretching and necking-in of the film. Figure 7 shows
the longitudinal velocity component u(·, y) at different lateral cuts. The increase in the longitudinal
velocity due to the draw ratio D>1 is clearly visible.

Finally, we investigated the result of the optimization problem (4). The aim was to find an initial
velocity profile u0 and the shape of the nozzle (i.e. an initial thickness e0 of the film), so that we
obtain a uniform thickness ed at the position of the spindle. Figure 8 shows the initial velocity
profile u0 before and after optimization. From Figure 8 it is clear that the velocity at the edge
of the film should be less compared with the center part of the film, so that the flux in the edge
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Figure 10. Nozzle shape (top) and film thickness at take-up (bottom) before optimization.

part will be less and it results in stopping the accumulation of fluid in the edge and removes the
edge bead. Figure 9(a) shows the thickness profile for un-optimized situation. Lateral cuts of the
film thickness e(·, y) are plotted for different x-coordinates along the film. Two effects are clearly
visible from this figure: on the one hand, the decrease in the film thickness along the centerline
y=0, and on the other hand, the development of the edge-bead effect as the longitudinal coordinate
x grows. In contrast to that, Figure 9(b) shows the situation with the optimized initial thickness e0.
The uppermost line corresponds to the initial thickness e0 and the graph at the bottom shows the
film thickness at the take-up point x= L . At the take-up point we obtain a constant film thickness
of ed =0.1 corresponding to the draw ratio D=10. Figures 10 and 11 show a comparison of
the un-optimized (left) and optimized situation (right). The initial thickness corresponding to the
shape of the nozzle is shown in the upper part and the final film thickness is given below. In the
optimized situation the close-to ellipsoidal shape of the nozzle with the modified initial velocity u0
given in the Figure 8 counterbalances the edge-bead effect resulting in a uniform film thickness.

Remark 4.3
The results shown in Figures 10 and 11 may serve as an a posteriori justification of our inexact
adjoint system (8). Recall that we solve the state equation (1) as a free boundary value problem,
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but the adjoint system on a fixed domain with a uniform film width. This leads to an inexact
computation of the gradient and hence an inexact update of the control variable in Equation (10a).
However, this inexact update still leads to a decrease in the cost functional and our optimization
algorithm terminates with an acceptable solution solving problem (4). The optimized final thickness
of the film is constant at the take-up point. Hence, the optimization algorithm—with the inexact
gradient information—has terminated at the minimum of our cost functional (3). Figure 12 shows
the decrease in the cost functional versus the iteration number. A rigorous justification of the
observed convergence to the minimum based on space-mapping techniques is left open for future
research.

To end our investigations of the optimization problem, the following table shows the computa-
tional time and the number of iterations required for different tolerance levels 	.
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	 Number of iterations Time (min)

0.05 6 2
0.01 96 18
0.005 169 27
0.001 692 52

5. CONCLUSION

We studied the isothermal film casting process. Based on the averaged Navier–Stokes equations,
the evolution of the film thickness and width is governed by a free boundary value problem. In an
industrial application of the film casting process, one is typically interested in obtaining an even
thickness distribution at the take-up point of the film. However, a uniform thickness profile at the
nozzle always leads to the so-called edge-bead effect; the final film gets thinner in the middle than
at the edges. Hence, we formulated an optimization problem to determine the optimal velocity
profile at the nozzle and shape of the nozzle, which will lead to an even thickness distribution at
the take-up point. Applying the Lagrangian formalism to a modified problem with fixed film width,
we were able to derive an approximate adjoint equation. This approximate adjoint was used to set
up an minimization algorithm for our problem. Numerical simulations show that, even with this
approximate version of the adjoint equations, the minimization algorithm converges. Therefore,
we were able to compute the optimal shape of the nozzle that produces a uniform film thickness.

A mathematical analysis of the proposed approximative adjoint equations and their relation to
the full adjoint equations for the free boundary value problem is left as an open question subject
to future research.
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